Application of Artificial Neural Network in Composite Research

نویسندگان

  • Peixian Zhu
  • Shenggang Zhou
  • Jie Zhen
  • Yuhui Li
چکیده

Artificial neural network is a technique with flexible mathematical structure and lots of characteristics such as parallel distributed processing, nonlinear processing and so on. So the artificial neural network becomes a common method to solve complex problems in research of material science by building a model. This article uses BP and RBF neural network to study the impact from components of composite materials, process conditions on properties of composite materials. We establish the relational model among the third element in composition, hot dipping temperature and shear stress which can reflect the joint face strength of Pb-Al composite materials, and give the model verification by using experimental data. The results which show that the neural network model can be used to predict the shear stress when change the third element in composition and the hot dipping temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of artificial neural network in deoxygenation of water by glucoseoxidase immobilized in calcium alginate/MnO2 composite

A three-layer artificial neural network (ANN) model was developed to predict the remained DO (deoxygenation) in water after DO removal with an enzymatic granular biocatalyst (GB), based on the experimental data obtained in a laboratory stirring batch study. The effects of operational parameters such as initial pH, initial glucose concentration and temperature on DO removal were investigated. On...

متن کامل

PREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE BEAM-COLUMNS BY ARTIFICIAL NEURAL NETWORK

In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial ...

متن کامل

Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying

In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling time, time and temperature of sintering as well as vial speed were selected as independent input an...

متن کامل

Prediction of Engineered Cementitious Composite Material Properties Using Artificial Neural Network

Cement-based composite materials like Engineered Cementitious Composites (ECCs) are applicable in the strengthening of structures because of the high tensile strength and strain. Proper mix proportion, which has the best mechanical properties, is so essential in ECC design material to use in structural components. In this paper, after finding the best mix proportion based on uniaxial tensile st...

متن کامل

Application of Artificial Neural Networks for Analysis of Flexible Pavements under Static Loading of Standard Axle

In this study, an artificial neural network was developed in order to analyze flexible pavement structure and determine its critical responses under the influence of standard axle loading. In doing so, more than 10000 four-layered flexible pavement sections composed of asphalt concrete layer, base layer, subbase layer, and subgrade soil were analyzed under the impact of standard axle loading. P...

متن کامل

Application of artificial neural networks on drought prediction in Yazd (Central Iran)

In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010